Large Scale Distributed Sparse Precision Estimation
نویسندگان
چکیده
We consider the problem of sparse precision matrix estimation in high dimensions using the CLIME estimator, which has several desirable theoretical properties. We present an inexact alternating direction method of multiplier (ADMM) algorithm for CLIME, and establish rates of convergence for both the objective and optimality conditions. Further, we develop a large scale distributed framework for the computations, which scales to millions of dimensions and trillions of parameters, using hundreds of cores. The proposed framework solves CLIME in columnblocks and only involves elementwise operations and parallel matrix multiplications. We evaluate our algorithm on both shared-memory and distributed-memory architectures, which can use block cyclic distribution of data and parameters to achieve load balance and improve the efficiency in the use of memory hierarchies. Experimental results show that our algorithm is substantially more scalable than state-of-the-art methods and scales almost linearly with the number of cores.
منابع مشابه
Supplement: Large Scale Distributed Sparse Precision Estimation
All norms in this section are defined elementwise. To recap, we solve the following problem: The Lagrangian of (1) is
متن کاملLarge-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation
In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...
متن کاملInnovated Scalable Efficient Estimation in Ultra - Large Gaussian Graphical Models
Large-scale precision matrix estimation is of fundamental importance yet challenging in many contemporary applications for recovering Gaussian graphical models. In this paper, we suggest a new approach of innovated scalable efficient estimation (ISEE) for estimating large precision matrix. Motivated by the innovated transformation, we convert the original problem into that of large covariance m...
متن کاملSparse approximate inverses of Gramians and impulse response matrices of large-scale interconnected systems
In this paper we show that inverses of wellconditioned, finite-time Gramians and impulse response matrices of large-scale interconnected systems described by sparse state-space models, can be approximated by sparse matrices. The approximation methodology established in this paper opens the door to the development of novel methods for distributed estimation, identification and control of large-s...
متن کاملAn R Package flare for High Dimensional Linear Regression and Precision Matrix Estimation
This paper describes an R package named flare, which implements a family of new high dimensional regression methods (LAD Lasso, SQRT Lasso, `q Lasso, and Dantzig selector) and their extensions to sparse precision matrix estimation (TIGER and CLIME). These methods exploit different nonsmooth loss functions to gain modeling flexibility, estimation robustness, and tuning insensitiveness. The devel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013